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Abstract

Driven by growing concerns about climate change, the government and the public are
increasingly focused on understanding rumen methanogenesis in livestock. This paper
aimed to review the strategies to reduce enteric methane (CH;) emissions from
ruminants, which is a major contributor to greenhouse gases (GHGs). We explored
diverse approaches from natural plant additives to chemical additives (e.g., 3-NOP,
monensin, nitrate, etc.) as well as animal breeding techniques to methane emissions
from ruminants. Research and development of methane inhibitors have primarily focused
on two approaches: targeting methanogenic archaea in the rumen and enhancing hydrogen
utilization within the rumen. The development of methane mitigation technologies has
gained significant attention as a promising approach to reducing GHG emissions from
livestock. However, concerns regarding the potential impact of these technologies on the
health of both animals and humans require a comprehensive safety assessment such
as phased toxicity studies and defined usage criteria and restrictions. Addressing
methane emissions from ruminants poses a pressing challenge that requires a
multifaceted approach. To achieve effective methane reduction, a combination of
technologies must be implemented. Furthermore, collaboration among researchers,
livestock farmers, and feed companies is essential to guaranteeing safe, sustainable, and
environmentally friendly livestock production.
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Table 1. Methane emission factors from enteric fermentation and manure of ruminants (kg/head/yr)

Livestock 2023 Applied emission factor Source of emission factor
<1 year old 45
Female
H > 1 year old 53 Country-Specific Emission Factor
anwoo -
<1 year old 3 (approved in 2018)
Male
> 1 year old 61
<1 year old 33
. ~ Country-Specific Emission Factor
Dairy cattle 1-2 years old 83 (approved in 2020)
> 2 years old 139
Beef cattle 53 2006 IPCC Emission Factor
Sheep, goat 5 2006 IPCC Emission Factor
Dairy cattle Manure emission factors 58 2006 IPCC Default (North America)
Hanwoo, Manure emission factors 1 2006 IPCC Default (North America)
beef cattle

IPCC, Intergovernmental Panel on Climate Change.
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Fig. 1. Relationship between dairy cow feed composition and rumen methane production.
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Table 2. Methane reduction rate in dairy cows according to nitrate supplementation level

Methane production

5:253?3:;3 (o kg DMI &) supplglr:::ﬁation redu(!\'::g;hargze (%) Fuimress
Control Treatment
) 19.4 16.2 2.1% 16.5 (57]
54 25.7 16.6 0.88 g/kg'BW 34 (58]
92 18.7 12.6 2.7 33 (48]
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Herbs and Plant Additives

#

ﬁ‘& @Z@g— "

Extraction and purification Optimal Formula Ch

I | |

ition and fu ional analysis

L

Main mechanisms of plant-based feed additives

Antibacterial, antiprotozoal, and antifungal activity Antioxidant effect Destruction of quorum sensing o Gut microbiota regulation and balance

gram-positive and gram-negative bacteria

Fig. 2. Mechanism of action and development of plant extracts.
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